

FOSMessage

FOSMessage is a PHP 5.4+ framework-agnostic library providing a data structure
and common features to set up user-to-user messaging systems.

You can think of it as a model for your messaging features : it will take care of the consistency
of the data for you in order to easily create a full-featured messaging system.

Note

This library is currently in development. You can test it in your project
(the Composer installation process is very simple), but you should not use it in production
for the moment.

This library is based on concepts shared by most modern frameworks (dependency injection,
event dispatching, abstract data drivers, etc.) and therefore, it’s very easy to set it up in
any kind of context.

If you want to set it up in Symfony, FOSMesageBundle is being developed in a new version
(not ready yet).

Key features

	Conversation-based messaging

	Multiple conversations participants support

	Very easy to implement (at least in most of the cases)

	Framework-agnotic

	Doctrine ORM and Mongo ODM support

	Not linked to user system implementation

	Optionnal tagging system to organize conversations

	Event system to let developer execute actions on key steps

	Implemented in framework-specific bundle / module

	PHP7 and HHVM support

Documentation

	Getting started
	Requirements

	Installation

	Configuration (wihout framework)
	Step 1: Set up your User model

	Step 2: Configure the Doctrine entity manager

	Configuration (using Symfony)
	Step 1: Set up your User model

	Step 2: Configure the Doctrine entity manager

	Usage
	Choose your driver

	Use the components
	The Repository

	The Sender

Getting started

Requirements

FOSMessage only supports Doctrine ORM for the moment but it will support
Doctrine ODM in the future. Therefore, for now, you need Doctrine ORM:

composer require doctrine/orm

Installation

This bundle is available on Packagist. You can install it using Composer:

composer require friendsofsymfony/message:1.0.x-dev

Important

You should not use development versions in Composer: we are using it here
only because the library is currently in development. When the library will be
released, change that version to follow semantic versionning.

Configuration (wihout framework)

Step 1: Set up your User model

Note

For the moment, only Doctrine ORM is supported. Doctrine ODM will be available soon.

FOSMessage provides a flexible set of tools organized around three main entites:
conversations, messages and persons.

The library provides default entities for conversations and messages and they will
be enough for the beginning (see Customize the default entities to learn more).

However, you need to configure the library to tell it what your User model is.
FOSMessage requires that your user class implement PersonInterface. This
library does not have any direct dependencies to any particular user system,
except that it must implement the above interface.

Your user class may look something like the following:

<?php

use Doctrine\ORM\Mapping as ORM;
use FOS\Message\Model\PersonInterface;

/**
 * @ORM\Entity
 */
class User implements PersonInterface
{
 public function getId()
 {
 return $this->id;
 }

 // Your code ...
}

Step 2: Configure the Doctrine entity manager

You need to configure Doctrine for two things:

	use your User model as the entity for FOSMessage ;

	use the default entities provided by Doctrine ;

If you are not using a framework, you need to configure Doctrine manually
in order to get a usable EntityManager for FOSMessage.

Here is an example of configuration to help you do so:

<?php

$config = \Doctrine\ORM\Tools\Setup::createConfiguration(true);

/*
 * Tell Doctrine to use both your entities and the default entities from FOSMessage
 */
$config->setMetadataDriverImpl($config->newDefaultAnnotationDriver([
 __DIR__ . '/vendor/friendsofsymfony/message/src/Driver/Doctrine/ORM/Entity',
 __DIR__ . '/src',
], false));

/*
 * If you want to use a debug logger
 */
if ($logger) {
 $config->setSQLLogger($logger);
}

/*
 * Your database parameters
 */
$dbParams = [
 'driver' => 'pdo_mysql',
 'host' => '127.0.0.1',
 'user' => 'root',
 'password' => 'root',
 'dbname' => 'fos_message',
];

/*
 * Use the Doctrine event manager to use your User model instead of the FOSMessage interface
 * in FOSMessage driver
 */
$rtel = new \Doctrine\ORM\Tools\ResolveTargetEntityListener();
$rtel->addResolveTargetEntity('FOS\\Message\\Model\\PersonInterface', 'Entity\\User', []);

$evm = new \Doctrine\Common\EventManager();
$evm->addEventListener(Doctrine\ORM\Events::loadClassMetadata, $rtel);

/*
 * Finally, create the Doctrine EntityManager
 */
$entityManager = \Doctrine\ORM\EntityManager::create($dbParams, $config, $evm);

Configuration (using Symfony)

While the FOSMessage bundle is not ready, you can still configure Symfony and Doctrine to
use the library in your project.

Step 1: Set up your User model

Note

For the moment, only Doctrine ORM is supported. Doctrine ODM will be available soon.

FOSMessage provides a flexible set of tools organized around three main entites:
conversations, messages and persons.

The library provides default entities for conversations and messages and they will
be enough for the beginning (see Customize the default entities to learn more).

However, you need to configure the library to tell it what your User model is.
FOSMessage requires that your user class implement PersonInterface. This
library does not have any direct dependencies to any particular user system,
except that it must implement the above interface.

Your user class may look something like the following:

<?php

namespace AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use FOS\Message\Model\PersonInterface;

/**
 * @ORM\Entity
 */
class User implements PersonInterface
{
 public function getId()
 {
 return $this->id;
 }

 // Your code ...
}

Step 2: Configure the Doctrine entity manager

You need to configure Doctrine for two things:

	use your User model as the entity for FOSMessage ;

	use the default entities provided by Doctrine ;

When you are using Symfony, you can configure the Doctrine entity manager through the
DoctrineBundle configuration:

app/config/config.yml

doctrine:
 # ...

 orm:
 auto_generate_proxy_classes: "%kernel.debug%"
 naming_strategy: doctrine.orm.naming_strategy.underscore
 auto_mapping: true

 # The mappings to import the FOSMessage entities
 mappings:
 fos_message:
 type: annotation
 dir: %kernel.root_dir%/../vendor/friendsofsymfony/message/src/Driver/Doctrine/ORM/Entity
 prefix: FOS\Message\Driver\Doctrine\ORM\Entity

 # User your user entity instead of the PersonInterface
 resolve_target_entities:
 FOS\Message\Model\PersonInterface: AppBundle\Entity\User

You also need to register a few services:

app/config/services.yml

services:
 fos_message.driver:
 class: FOS\Message\Driver\Doctrine\ORM\DoctrineORMDriver
 arguments: ["@doctrine.orm.entity_manager"]

 fos_message.repository:
 class: FOS\Message\Repository
 arguments: ["@fos_message.driver"]

 fos_message.event_dispatcher:
 class: FOS\Message\EventDispatcher\SymfonyBridgeEventDispatcher
 arguments: ["@event_dispatcher"]

 fos_message.tagger:
 class: FOS\Message\Tagger
 arguments:
 - "@fos_message.driver"
 - "@fos_message.repository"

 fos_message.sender:
 class: FOS\Message\Sender
 arguments:
 - "@fos_message.driver"
 - "@fos_message.event_dispatcher"

And then you will be able to use the components as following:

<?php

namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 $repository = $this->get('fos_message.repository');
 $sender = $this->get('fos_message.sender');

 return $this->render('default/index.html.twig');
 }
}

Now that you have a configured entity manager, you are ready to start using the library!

Usage

Once you have configured Doctrine and your model, you are ready to use FOSMessage.

FOSMessage is organized around three components : the Repository that fetch conversations and messages,
the Sender that start conversations and send replies and the Tagger that let you (the developer) tag
conversations to retreive them in the future.

These three components are usually set up automatically in the context of a framework (by the dependency
injection). If you are not using a framework, you have to set up these components yourself.

For the moment, as only Doctrine ORM is available in FOSMessage, you have to use the
Doctrine ORM driver. In the future, other options will be available.

Choose your driver

The driver is the object linking the library to your persistance layer (Doctrine ORM, Propel, etc.).
Thus according to what persistance layer you are using, you have to choose a different driver
for FOSMessage.

For Doctrine ORM, you can create the driver as following using the entity manager configured in
the Getting started chapter:

<?php
$driver = new \FOS\Message\Driver\Doctrine\ORM\DoctrineORMDriver($entityManager);

Use the components

	The Repository
	List the converations of a given person

	Find a conversation by its identifier

	List the messages of a given conversation

	Find the link between a person and a conversation

	The Sender
	Start a conversation

	Reply to a conversation

The Repository

The Repository is the basis of you messaging system. It let you fetch conversations and
messages.

You can create it like this:

<?php
$repository = new \FOS\Message\Repository($driver);

It provides 4 methods:

List the converations of a given person

Usually in a messaging system there is an “inbox”: a list of conversations in which
the current user is participating.

To retrieve this list, the repository provides the method
getPersonConversations(PersonInterface $person, $tag = null).

You can use it either without $tag object (we will talk about tags a bit later) to fetch
all the conversations of the given user.

Conversations will be sorted descending by date.

For instance, in a controller it could look like this:

<?php

class MessagingController
{
 public function inboxAction()
 {
 // ...
 $repository = new \FOS\Message\Repository($driver);
 $conversations = $repository->getPersonConversations($this->getUser());

 return $this->render('inbox.html.twig', ['conversations' => $conversations]);
 }
}

Find a conversation by its identifier

The method getConversation($id) is quite easy to understand: it returns a single conversation
by its identifier (or null if none is found).

Note

Note that the security is not handled by the library: you should check if your user is allowed
to access the conversation.

For instance, in a controller it could look like this:

<?php

class MessagingController
{
 public function conversationAction($id)
 {
 // ...
 $repository = new \FOS\Message\Repository($driver);
 $conversation = $repository->getConversation($id);

 // Check access
 if (! $conversation->isPersonInConversation($this->getUser())) {
 throw new AccessDeniedHttpException();
 }

 return $this->render('conversation.html.twig', ['conversation' => $conversation]);
 }
}

List the messages of a given conversation

One you have a conversation, you will probably want to display its messages. To do so, you
have to use the method
getMessages(ConversationInterface $conversation, $offset = 0, $limit = 20, $sortDirection = 'ASC').

This method has 4 arguments:

	the conversation $conversation of the messages ;

	the offset in the result set (for pagination) ;

	the limit of messages to get (for pagination) ;

	the sort direction to use (messages will be sorted by date) ;

For instance, in a controller it could look like this:

<?php

class MessagingController
{
 public function conversationAction($id)
 {
 // ...
 $repository = new \FOS\Message\Repository($driver);
 $conversation = $repository->getConversation($id);

 // Check access
 if (! $conversation->isPersonInConversation($this->getUser())) {
 throw new AccessDeniedHttpException();
 }

 $messages = $repository->getMessages($conversation);

 return $this->render('conversation.html.twig', [
 'conversation' => $conversation,
 'messages' => $messages,
]);
 }
}

Find the link between a person and a conversation

Sometimes you can need to retrieve the link between a user and a conversation
(for instance if you customized the entities and stored data in this link).

To do so, the repository provides the method
getConversationPerson(ConversationInterface $conversation, PersonInterface $person) that
will return you an instance of FOS\Message\ModelConversationPersonInterface.

The Sender

The Sender let you start conversations and reply to them.

You can create it like this:

<?php
$sender = new \FOS\Message\Sender($driver);

It provides 2 methods:

Start a conversation

The method startConversation(PersonInterface $senderPerson, $recipient, $body, $subject = null)
will start a conversation with a sender and a single or multiple recipient(s). A first
message will be posted in this conversation with a given body.

The method has 4 arguments:

	$senderPerson: the user who started the conversation ;

	$recipient: a single PersonInterface object or an array of PersonInterface ;

	$body: the content of the first message of the conversation ;

	$subject: in FOSMessage, subject is not required but you can provide one here ;

This method return the created conversation object (instance of ConversationInterface).

For instance, in a controller it could look like this:

<?php

class MessagingController
{
 public function startAction(Request $request)
 {
 // ...
 $sender = new \FOS\Message\Sender($driver);

 if ($request->getMethod() == 'POST') {
 $data = ...; // Find the form data for instance ...

 $conversation = $sender->startConversation($this->getUser(), $data['recipient'], $data['body']);

 return $this->redirect('conversation_view', ['id' => $conversation->getId()]);
 }

 return $this->render('form_start.html.twig');
 }
}

Reply to a conversation

Once a user has started a conversation, other members could reply. The method
sendMessage(ConversationInterface $conversation, PersonInterface $senderPerson, $body)
does exactly that by replying to a given conversation, as a given sender with a given body.

The method has 3 arguments:

	$conversation: the conversation in which the user want to post a reply ;

	$senderPerson: the user who wrote the message ;

	$body: the content of the reply ;

This method return the created message object (instance of MessageInterface).

For instance, in a controller it could look like this:

<?php

class MessagingController
{
 public function replyAction($id)
 {
 // ...
 $repository = new \FOS\Message\Repository($driver);
 $conversation = $repository->getConversation($id);

 // Check access
 if (! $conversation->isPersonInConversation($this->getUser())) {
 throw new AccessDeniedHttpException();
 }

 $sender = new \FOS\Message\Sender($driver);

 if ($request->getMethod() == 'POST') {
 $data = ...; // Find the form data for instance ...

 $message = $sender->sendMessage($conversation, $this->getUser(), $data['body']);

 return $this->redirect('conversation_view', ['id' => $conversation->getId()]);
 }

 return $this->render('form_reply.html.twig', ['conversation' => $conversation]);
 }
}

Index

 nav.xhtml

 Table of Contents

 		FOSMessage

 		Getting started

 		Requirements

 		Installation

 		Configuration (wihout framework)

 		Step 1: Set up your User model

 		Step 2: Configure the Doctrine entity manager

 		Configuration (using Symfony)

 		Step 1: Set up your User model

 		Step 2: Configure the Doctrine entity manager

 		Usage

 		Choose your driver

 		Use the components

 		The Repository

 		The Sender

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

